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ABSTRACT

Kinematic and dynamic analysis of a parallel robot consisting of three
planarly-actuated links, is presented in this paper. Coordinated motion of three planar
motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion
of an output link. Its extremely simple design along with much larger work volume than
the commonly used parallel robots make this high performance-to-simplicity ratio robot
very attractive. Experimental model verifies the unique combination of large work

volume and high accuracy of this robot.

1. INTRODUCTION
The kinematic structure of most contemporary robots is an open kinematic chain

structure (known also as serial manipulators or anthropomorphic structure). Only
relatively few commercial robots are composed of a closed kinematic chain (parallel)
structure. However, the increasing interest in parallel robots points to the potential
embedded in this structure which has not yet been fully exploited. The advantages of
parallel robots as compared to serial ones are:
* higher payload-to-weight ratio since the payload is carried by several links in

parallel,
* higher accuracy due to non-cumulative joint error,
* higher structural rigidity, since the load is usually carried by several links in parallel

and in some structures in compression-traction mode only,
» Jlocation of motors at or close to the base,

 simpler solution of the inverse kinematics equations.
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Conversely, they suffer from smaller work volume, singular configurations and a more

complicated direct kinematic solution (which is usually not required for control
purposes).
A six degrees-of-freedom parallel manipulator was introduced by Stewart in 1965
[Stewart, 1965] and since then has been commonly known as the "Stewart-platform". (It
appears that much earlier versions of parallel manipulators were already studied, see
[Merlet, 1994]). Many variants of this structure have since been investigated; most of
them are configurations having six linearly actuated links with different combinations of
link-platform connections such as 3-3, 3-6, and the more general 6-6 one (see Fig. 1).
Examples of different structures of parallel manipulators are given in [Chen and Song,
1992; Hunt, 1983; Innocenti and Parenti-Castelli, 1991,1994; Lin et al., 1990,1992;
Pierrot et al., 1991; Waldron et al., 1989]. An atlas of parallel robots was composed by
Merlet and can be found in the web site [http:// www.inria.fr/ prisme/ personnel/ merlet/
merlet eng.html].
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Type 3-3 Type 3-6 Type 6-6
Fig. 1: Stewart platform type 3-3, 3-6, 6-6

This paper analyses a different type of a parallel manipulator that takes advantage of
two-degrees-of-freedom planar motors. Coordinated motion of three such planar motors
is converted through a spatial mechanism with fixed length links, into a six-degrees-of-
freedom motion of the output link. Such a mechanism has many advantages over the
common six extendible links parallel manipulators. It has a much larger work volume,
very simple forward and inverse kinematic solutions, and it contains only seven moving
parts (including motors) and six joints without any gear trains, cables or other power
transmission devices. Thus, this robot is probably the simplest six degrees-of-freedom
type robot (both parallel and serial) [Tsai and Tamahshebi, 1993; Ben-Horin and
Shoham, 1996].

In this paper the kinematic and dynamic analysis of this robot is presented. The

dynamic simulation also compares its performance with the common Stewart platform

parallel robot. The experimental model, which to the best of our knowledge is the first



one that has been actually built, exhibits the unique combination of accuracy and work
volume of this robot type.

The manipulator, shown in Fig. 2, consists of the following components: three links
of fixed length having a spherical joint on one end and a revolute joint on the other end,
three actuators which move planarly on a stationary platform and a

six-degrees-of-freedom output platform.
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Fig. 2: A six-degrees-of-freedom parallel manipulator with three planarly actuated

links.

2. MANIPULATOR KINEMATICS
2.1 Solution of the inverse kinematics

Manipulation tasks are usually given as a set of positions and orientations in world
coordinate system of the robot's end-effector trajectory. To achieve these tasks it is
necessary to transform the end-effector trajectory into active joints motion. This
transformation, known also as the inverse kinematic problem, is, in our case, the
calculation of the position of the three planar motors from a given position and orientation
of the moveable platform.

This section describes the solution of the inverse kinematics which, as is usually the
case with typical parallel manipulators, is simpler than the forward kinematics (see
Section 2.2).

Define a coordinate system N attached to the stationary platform such that the n3 axis

is normal to the platform. Define another coordinate system, K attached to the moving
platform such that the k3 axis is normal to the moving platform (see Fig. 3).



Fig. 3: Kinematic skeleton of the manipulator

If p; is the position vector from origin N to spherical joint i, and b; is the position of

motor i (intersection of link i with motor 1), then the following relation exists:

pi =si+bj (1)

where s; is the vector of link i and given, with respect to N, by:
[1. cosP, cosar, |
S, o 1. cosP, sina, | 2)

I;sin B;

I, is the length of link 1 with elevation and yaw angles o, ,f3; as shown in Fig. 4.



Moveable
Platform

Motor 1

Fig. 4: link's parameters

Vector p; can be calculated from the known constant positions of the spherical joints

relative to the moving coordinate system, p!, and the required given position, q, and

orientation, R, of the moving coordinate system.
pi =q+Rp! 3)

Solving Eq. (1) for the position of the planar motors, b; , gives the coordinate of the

motors in N:
b, =p;; —1; cosP;cosa, 4)
bi)2 =Piy— 1. cos B, sina; %)
where
B, =sin”’ p‘l—_b3 ©6)

1

Using this inverse kinematics solution, it is possible to calculate the motors motion
needed to achieve a given moveable platform (output link) trajectory. Fig. 5a shows the
motor's motions on the stationary plate to achieve a 7/2 rotation about the z axis. (The
starting position is mark with a small circle). In Fig. 5b the same moveable platform
motion is combined with a 200 mm translation along the x axis (see Section 7 for actual

robot's dimensions).



Fig. 5a Fig. Sb

Fig. 5: Motors' paths for rotation and translation of the moveable platform.

2.2 Solution of the Direct Kinematics

The direct kinematics calculates the position and orientation of the moveable platform
from a given position of the planar motors. Our solution follows the same path of Nanua
et. al. [1990] but the resulting solution is simpler since firstly, only three rather than six
links are involved in the present mechanism and secondly, the motion of the motors is a
planar one.

The solution given by Tahmasebi and Tsai [1994] differs from the one given below
because of a different order of joints. In Tahmasebi and Tsai's solution the spherical
joints are close to the base and the revolute joints are on the distal end, while in the
present design the order is reversed. It should be mentioned that this type of robot differs
from the conventional fix-link's end-position parallel robots where each one of the
platforms can be considered either the stationary or the movable one. Inverting the
spherical and the revolute joints does yield, in our case, a different solution of the

kinematics.

Assuming a rigid moveable platform, then the distance between two spherical joints, i

and j, is a constant, aij

|l°‘i—l°i|=aij Lj=123  i#j 9)
Substituting for the magnitude of pj , the above equation becomes:

(xj =X +1j cosPcos a; - 1; cos B; cos oci)2 +
(yi—vi+] cosBjsinocj—licosBisinoci)2+ (10)

(zj— 2 +1jsinpj —1;sinB;)* —ajj =0



which can be written as a function of the unknown i as:

Dj cos Bj + Dy cosPj + D3 cosfjcos B +
Dy sinfj + DssinB; +Dg sinpsinf; + (11)
D7 =0

where:

Dy =2AxAj +2AyB;

Dy =2A4
D5 = -2A7;

D, =Ax? + Ay? + Az? +1J2- +12 —aizj

and

Ax:xi —X;
Ay=y;-y;
AZZZJ- -z
Aj=1jcosaj
A =1;cosa;
Bj = lj sinocj

B; =1;sina;

Substituting the tangent half angle form into the above equation and casting the
unknown [ into the known terms the following equation is obtained:

Iot] +11tj+19=0 (12)

where:

Io = (D= Dy =D3 +D7)t} +2Dst; + D; =D — D3 + D5
I =2D4t12 +4Dgt; +2Dy

and

t; =tan



Note that if we consider the unknown B as part of the known term Ij, then it results in

three uncoupled quadratic equations,

for i=1j=2 Ezt%-l—Eltz-l—E() =0 (13)
for i=3j=2  Gyt3+Gity +Gg =0 (14)
for i=1,j=2  Hyt+Hpty+Hp =0 (15)

where Ej, Gi, and Hj are functions of the unknown variable t1,t3, and t] respectively.

The solution of this non-linear system of equations is obtained by [Salmon, 1964]:

G, Gl| G, Gy

Ex Eq| |E2 Eo|

Gy G| [Go G =0 (16)
Eo Ez| |[Eo Ep

which results in a fourth order polynomial in t] and t3.

Rearranging terms and eliminating t1,
4 3 2
Jat3 +13t3 +Jot3 +J1t3+Jg =0 (17)
where Jj, i=0-4, are functions of only t3.

Applying again the above method for Eqgs. (15) and (17), both of which are functions
of t] and t3,

(J3Hz =J4Hp) (J2H2 =J4Hp) JiH> JoH2

JoHp —J4Ho) (J2H;—-J3Ho+J1H2) (JiHp +JoH2) JoH; 0 (18)
H, H H, 0
0 H, H, Ho

a sixteenth order polynomial in t] is obtained.

This polynom contains only even powers of t] hence two sets of eight reflected
solutions exist. Among them we are interested in the real and positive solutions only.
Knowing t1, t2 and t3 are then calculated from the quadratic Eqs. (13) and (15) while Eq.
(14) is used to examine the validity of the solution. An example of four solutions for a
given position of the motors is shown in Fig. 6. The other four are reflected about the
stationary platform.
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Fig 6: Four solutions for a given motors' position

5. MANIPULATOR DYNAMICS

Since the late eighties the dynamic of parallel robots has been investigated in
several papers. Do and Yang [1988] introduced an algorithm to solve the inverse
dynamics for platform type of manipulators using Newton-Euler equations of motion.
They found that the inverse dynamics of the system is governed by thirty-six linear
equations. The number of these simultaneous equations can be reduced to six, if a proper
sequence is taken. Zhang and Song [1993] presented a more computationally efficient
scheme based on the virtual work principle for inverse dynamics of a general Stewart
platform. Gosselin [1996] proposed a parallel computational algorithm for the kinematics
and dynamics of planar and spatial parallel manipulators. He showed that, for this type of
manipulator, the inverse kinematics and the inverse dynamics procedures can be easily
parallelized. The result is a closed-form efficient algorithm, based on Newton-Euler
formalism, using n processors, where n is the number of kinematic chains connecting the
base to the end-effector. Pang and Shahinpoor [1994] introduced an algorithm to solve
the inverse dynamics of parallel manipulator based on Lagrangian technique. They
showed that one should introduce and subsequently eliminate Lagrange multipliers to
arrive at the governing equations. Zhiming [1994] showed that special features of the
Stewart platform can lead to decomposition of the moving platform and the legs in the
dynamics analysis. With this decomposed formulation, one can investigate the effect of
leg inertia to determine whether such effect should be included in the actual
implementation of control strategy, and use this formulation to implement control
algorithm when the effect of leg inertia can not be neglected.

Our analysis employs Kane's equations to develop a parallel robot dynamics in a
general form. A recent publication that employs Kane's equations to a specific parallel
robot dynamics can be found in Baiges and Duffy [1996]. This general representation
allows us first, to obtain the solution of different types of parallel robots in a simple way

and secondly, to obtain a set of equations from which both the inverse and the forward



dynamics can be easily derived. We apply and simulate the results of four types of robots:
two variations of the planarly actuated robot described in this paper, and for a comparison

purposes the known 3-3 and 3-6 Stewart platforms.

5.1 Dynamics of the planarly actuated manipulator
The dynamics of the planary actuated manipulator is developed in this section. First
the inverse dynamics is derived i.e., given the required trajectory of the moving platform,
the motor forces are calculated. Next, the forward dynamics is derived, i.e. given the
forces applied at the motors the moving platform trajectory is then calculated. For both
cases the AUTOLEV dynamic package was used to determine the dynamic equations and
to simulate the manipulator motion.

The dynamic model of the robot is shown in Fig 7.
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Fig 7: The dynamic model of the planarly actuated robot

The system consists of a moving platform K attached at points P; (i=1,2,3) to the
end points S of uniform, cylindrical rods S; (i=1,2,3) respectively, by means of ball
joints, symmetrically located on a circle of radius r fixed in the moving platform. The
rods S; are attached to bodies M; (i=1,2,3) by means of revolute joints, whose axes are
fixed in both S; and in M;, and cross M; at their center of mass M’;. Finally, the mass
center of the moving platform, K*, coincides with the center of the circle derived by P;;
S’;. The mass centers of S; are located at the midspan of S;; and Mj remain in plane
PL fixed in N at all times.
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Let nj, kj, sij (i,j = 1, 2, 3) be sets of three dextral, mutually perpendicular unit
vectors fixed in stationary, moving platforms and S; respectively, and oriented as in Fig.
7. Also, let s;; be aligned with the vectors s; of the centerlines of S; and let sj>, n; and
n; all be parallel to plane PL. Finally, let m;; (i =1, 2, 3) be three unit vectors parallel to
PL and aligned with the projection of the centerlines of S; on PL; and let O be the
origin of N.

Now, the configuration of the system in N can be described with the aid of fifteen

coordinates, defined as follows:

¢ 2p™ -0 (i=12) (19)
q; = COS_:(SH -my,) (20)
q, 2 p™t ‘n,_, (i=4,5) (21)
Je écosj (85 -my,) (22)
q,2p™ n_, (i=7.9 (23)
Qo ;COS:I (83 -my,) (24)
q,2p™ ., (i=10,1112) (25)

The three last coordinates qi3, q,, and q;5 are chosen to be space 1-2-3 rotation angles

[Kane, 1983], describing the orientation of K in N.
The approach chosen here to describe the motion of the system in N is as follows:
the ball joints attaching the moving platform to the limbs S; are temporarily removed, so

that the moving platform is regarded as undergoing an unconstrained motion (thus, the
velocities of points P; differ from those of points S, respectively). This unconstrained

motion can be described with the aid of fifteen generalized speeds, defined as follows:

u 2vMon (i=12) (26)
u, 2 -0 m, (27
u,=vMon , (i=4.5) (28)
u, Z-0> -m, (29)
u=v¥on, , (i=7.98) (30)
u, 2 % ‘m,, (31
u, =vEom , (i=10,1112) (32)
u, 20"k, (i=1314,15) (33)

The associated kinematical equations are:

& =u, (i=LK,12) (34)
&, =u,; +tanqy, (u, sing;; +u;c08qy3) (35)
&, =u,, 08 q; — Uy sing; (36)
&5 =(uy, sinq,; +uj5c08q,3)/ cosqy, (37)
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Moreover, the definitions in Eqgs. (26) - (33) enable one to express the velocities of
K',M.,and S, and the angular velocities of K,M., and S, as

o™ =0, v =un, +u,n, (38)
o = —UsSpps v =y + Uy —UsS)) X (1_21 sn) (39
o™ =0, VW= u,n, +un, (40)
O =-USy, V = un, +un —ugs, X KEZ s21) (41)
o™ =0, v = u.n, +ugn, (42)
»> =—UySy, v = U;ny + Ugly — UgS3, X (1_23531) (43)
o* =u.k, +u,k, +uk,, v =ugn, +uy,n, +u,n, (44)

Next, note that the velocities of points P;and S (i=1,2,3) can be expressed by:

P K K K'P
vV:=v 40 Xxp *=u,n +u,n,+u,n, +r(u;k, —u,k;) (45)

S5

M; S M35 .
vVi=v 407 xp 7 =(u, +lusing)n, + usn, +1,u, cosq,n, (46)

etc. In order to make the system move as planned, points Py and S;, and similarly,

points P, and S5, as well as points P; and S;, must coincide, say at t =0,

respectively, and, thereupon, move with equal velocities. That is,

v :vsi 47)
vz = VSZ (48)
vi= vsze (49)

Substituting Egs. (45) and (46) into Eq. (48) gives rise to the following three scalar

equations:

Upy = Uy = LySgug —1(Sy38;5 +514€ 155Uy +T(85C 15 = 838,,C15) Uys =0 (50)
Uy —Us + 1(C3C5 + 8138815 U5 + (S35 — S148;5Cp3 Uy, = 0 (51)
u —lcu +rs;c,u, —rcse,u, =0 (52)

where s, =sinq,; and ¢, =cosq, etc. These equations, along with six additional
equations obtained similarly from Egs. (47) and (49), can be solved for uj, ..., ug in

terms of ujg, ...,u;s, and arranged as follows:

15
u=2 Wy (i=1K.9 (53)

j=10
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where Wy (1=1,2,..,9; j=10, ..., 15) are functions of qy, ..., qi5. Using the constraint
equations, Eq. (53), to eliminate uj, ..., ug from Egs. (38) - (44), one is in a position to
form six dynamic equations, governing the motion of the system in N. These equations

can be cast in a matrix form, as follows:
MY+Cu+F+G=0 (54)

where W= [ﬁqo K XS]T, M is a 6 © 6 mass matrix, C isa 6wl centrifugal -

Corriolis matrix, and F and G are 6 oo 1 matrices associated with control forces and
gravitational forces. Their elements can be identified after note is taken of the fact that
S (i=1,23) and K* are

121

*

the forces acting on M

Vi = Fmn, +F,n, - M,, gn, (53)
FM; =FEn, +Fn, -M,, ¢gn, (56)
F" =F,n, +F;n, — M,, gn, (57)
FS =M, gn,, FS = -Mq gn,, FS = -Mg gn, (58)-(60)
F* = —Myegn, (61)

where Fy, ..., Fg are control forces components, M, , Mg (i=1,2,3) and M are the

masses of M;, S; (i=1,2,3) and K, g is the gravitational acceleration and
Fz[F, ® FJ.

In summary, Eq. (54) can be solved, in conjunction with Egs. (53) and (34) - (37),
for ujp,...,u;s (and uy..,ug) and q, ..., qs, given initial conditions q;(0), ..., q15(0),
u10(0),..., u35(0) and Fi(t), ..., Fg(t).

It should be mentioned that similar to the known serial manipulator dynamic

equation, Eq. (54) is the dynamic equation of the parallel manipulator counterpart.

Suppose now one wishes to solve for Fj, ..., Fs - needed to bring about a desired

motion of the system in N (the inverse problem). Then one may proceed as follows:

a.  Define ujg(t), ..., ujs5(t) (the "desired motion").

b.  Solve Eq. (53) for uy, ..., ug, and use uj...u;s in Egs. (34) - (37) to obtain qq, ...,
qis-

c. Find O, (t),..., 0, (t).

14



d.  Solve Eq. (54) for F using .., uy,..u, and q,...q;5-

If qio(t),...., qi5(t) are given rather than ujq(t),..., ujs(t), then one starts with the
evaluation of ujg, ..., ujs using Eq. (34) (for i =10, 11, 12) and (35) - (37). Then one

may proceed in accordance with steps b - d above.

5.2 Dynamic simulation results

Simulation results of three types of parallel robots are given below: a) planarly
actuated robot, b) a variation of the planary actuated robot where the joints order is
reversed, i.e., spherical joints are attached to the motors and revolute joints to the
moveable platform, and c) 3-3 Stewart platform.
Two trajectories were choosen: translation of 0.2 m in a constant velocity of 0.2 m/sec
(Figs. 8a-8b) and rotation of 80 degrees about a Z axis in a constant angular velocity of 80
degrees/sec (Figs. 8c-8e).
Figs. 8f and 8g compare the maximum forces at the motors of the different robots needed
to perform the above trajectories. This figures demonstrates the advantage of the planarly
actuated robots. In both trajectories the force at the motors are considerably smaller that

the commonly used Stewart platform (the same was evident for the 3-6 configuration).
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Fig. 8a: Translational motion Planarly actuated robot Fig. 8b: Translational motion 3-3 Stewart platform

Fig. 8c: Rotational motion Planarly actuated robot (a Fig. 8d: Rotational motion Planarly actuated robot (b

Fig. 8c: Rotational motion 3-3 Stewart platform
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Fig. 8f: Translational motion largest motor force

Fig. 8g: Rotational motion largest motor force

Fig. 8: Dynamic simulation Results

6. THE EXPERIMENTAL SYSTEM

The configuration we used for the experimental system is shown in Fig. 2. This

structure employs one spherical and one revolute joint at each one of the three links' end.

The radius of the moveable platform is 60 mm and the length of the fixed length links is

200 mm. The motors used were Northern Magnetic's planar motor controlled by Motion

Science's two axes controllers and connected to an IBM PC computer. Figs. 9 and 10

show the experimental system and a close view of the mechanism structure, respectively.

Fig. 9: The stationary platform and the robot
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Fig. 10: The robot structure

7. THE SYSTEM PERFORMANCES

This simple robot structure, that has only seven moving parts, has a work volume
which is limited only by the size of the stationary platform - 0.93 X 0.66 m in our design.
It is well known that one of the major parallel robots' drawbacks is their limited work
volume. The work volume is restricted by joint angles, link extensions limitations and by
the interference between links. In our case, joint angles limitations and link interferences
still exist, but there are no link extensions limitations since they are of fixed length.
Additionaly, since the size of the stationary platform and not the dimensions of the
moving parts determines its work volume, there is no common basis for comparison of its
work volume with that of conventional parallel robots. Nevertheless, when considering
only moving parts, the work volume of this robot (Fig. 11) is roughly one order of
magnitude larger than a similar sized typical six-link Stewart platform (see [Stoughton
and Arai, 1993; Wang and Masory, 1993]). The same is evident for orientational range.
Pitch and yaw are about 100 degrees (and can easily be increased by redesigning the
joints at the moveable platform) with roll reaching 300 degrees, if singular points are

avoided, and close to 180 degrees, if singular points are considered.
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Fig. 11: Work volume cross section along the stationary platform long axis

(dimensions in mm).

For the second version of the planarly actuated robot there is no singular point at £90
degrees roll rotation and, theoretically, the rotational motion is unlimited.

The planar motor's maximum velocity is about 1 m/sec at about 13 N per axis force
with each motor weighing 450 gr. Since the robot mass in our design was only 673 gr, the
acceleration of the robot without payload is about half the acceleration of the motors
alone.

The micro step resolution of the planar motors is 2.5 um. Because of the mechanism
structure, the repeatability in a planar motion of the moveable platform is the sum of the
motor resolution and the clearance of the spherical joint (commonly less than 0.01 mm).

From computational point of view the simple inverse kinematics algorithm, which
contains only 18 additions and substructions, 24 multiplications and divisions, and 6
trigonometric functions, allows a real time control with cycle time of considerably below

1 ms.

8. DISCUSSIONS AND CONCLUSIONS

Kinematics, dynamics and construction of a planarly actuated parallel robot is
described in this paper. Both the forward and the inverse kinematics algorithms are
simpler than the commonly used parallel robots due to only three moving links and the
uncoupled planar motion of the motors. For the dynamic analysis, Kane's method was
used in its general form and led to a set of equations from which both the inverse and the
forward dynamics of different types of parallel robots can easily be obtained. This
algorithm was used to simulate four different types of parallel robots - two versions of the

planarly actuated robots, and the 3-3 and 6-3 Stewart platform.
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Simulation results show the advantage of the planarly actuated robot in terms of work
volume and fewer number of singular points. A mathematical derivation of the singular
configurations of these types of robot which led to the same result, is the subject of a
separate paper. Also, it was found that the variation of the planarly actuated robot with
spherical joint at the motor side end, enables even larger work volume. Results of
dynamic simulation show clearly the advantage of the planarly actuated robot in several
paths. Much smaller forces are needed compare to a similar-sized Stewart platform both
in translational and rotational motion.

The experimental model exhibits the simple robot design due to very few moving
parts. The simple structure does not diminish its performances. On the contrary, it
increases considerably its work volume, simplifies the kinematic solution and makes the
robot very simple to construct. We believe that this type of parallel robot is very attractive
for several industrial (e.g. assembly) applications as well as and non-industrial (e.g.
medical) applications due to its unique combination of large work volume with high

accuracy.
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